

Molecular magnet based on the Fe^{II,III} complex with squaric acid

M. A. Kiskin,^a Y. G. Shvedenkov,^b V. N. Ikorskii,^b G. V. Romanenko,^c and V. I. Ovcharenko^c*

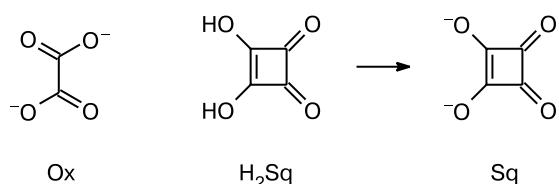
^aNovosibirsk State University,

2 ul. Pirogova, 630090 Novosibirsk, Russian Federation

^bInstitute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences,

3 Acad. Lavrentieva, 630090 Novosibirsk, Russian Federation.

^cInternational Tomography Center, Siberian Branch of the Russian Academy of Sciences,


3a ul. Institutskaya, 630090 Novosibirsk, Russian Federation.

Fax: +7 (383 2) 33 1399. E-mail: ovchar@tomo.nsc.ru

The reaction of Fe^{II} and Fe^{III} salts with tetrabutylammonium squarate in an aqueous solution gives rise to a new molecular magnet ($T_c = 8.6$ K).

Key words: molecular magnet, iron complexes, squaric acid.

Vigorous research has been undertaken lately to find compounds capable of magnetic ordering, *i.e.*, molecular magnets.¹ This study is an attempt at obtaining such compounds based on transition metal complexes with the squaric acid anion (Sq), which commonly functions as a bridging ligand.^{2–6} The Sq anion contains four electron-donating atoms and thus resembles the oxalate anion (Ox), whose tris-chelate complexes have formed the basis for a family of molecular magnets.^{7–10} However, unlike Ox, Sq does not tend to form chelates with metal ions of the first transition row, because of substantially larger distances between adjacent oxygen atoms (~2.6–2.7 Å for Ox and ~3.2–3.3 Å for Sq). Only few examples of chelation by the Sq anion are known for metals with large ion radii (like Pb and Ce).¹¹

Indeed, our attempts to synthesize heterometallic 3d metal complexes with Sq in the same way as oxalate complexes were unsuccessful. Nevertheless, the formation of a Fe^{II,III} compound was detected under conditions similar to those used in the heterometallic oxalate syntheses. This product was identified as [N(n-C₄H₉)₄]₂[Fe^{II}Fe^{III}(C₄O₄)₃(HC₄O₄)]·7H₂O (**1**) relying on the reproducible data of elemental analysis. Since H₂Sq is a fairly strong acid ($pK_1 = 1.2$, $pK_2 = 3.5$),¹² compound **1** contains water molecules rather than hydroxyl groups. Furthermore, the composition of the solid phase of **1** did not change upon variation of the initial

Fe/Sq ratio, which implies that this is an individual compound. Note that the synthesis of **1** requires the simultaneous presence, in the reaction mixture, of iron ions in different oxidation states and the tetrabutylammonium squarate, because the reaction of either Fe^{II} or Fe^{III} alone with [N(n-C₄H₉)₄]₂Sq affords the known Fe(C₄O₄)·2H₂O and Fe(C₄O₄)(OH)·3H₂O complexes, respectively.^{13,14} Compound **1** has a characteristic IR spectrum (Fig. 1). The presence of the tetrabutylammonium cation is confirmed by the ν (C—H) bands in the region of 2870–2970 cm⁻¹, and the presence of water molecules is validated by a broad band at about 3300–3600 cm⁻¹. Repeated attempts to grow a high-quality single crystal by recrystallizing **1** from CH₂Cl₂ or MeCN or by interdiffusion of aqueous solutions of iron salts and [N(n-C₄H₉)₄]₂Sq in agar or silicate gels failed; this precluded structure determination. A powder X-ray diffraction pattern attests that **1** is a crystalline compound. It contains no peaks typical of the known Fe^{II} or Fe^{III} compounds with squaric acid, Fe(C₄O₄)·2H₂O or Fe(C₄O₄)(OH)·3H₂O, which were prepared by known procedures¹⁴ and used for comparison.

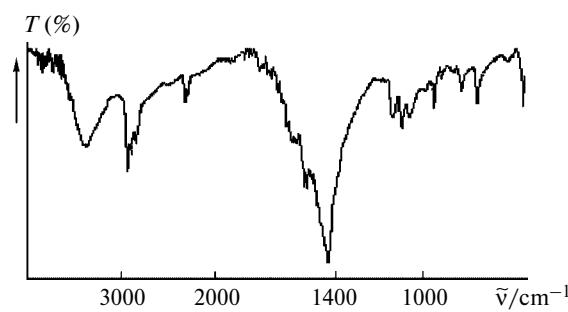
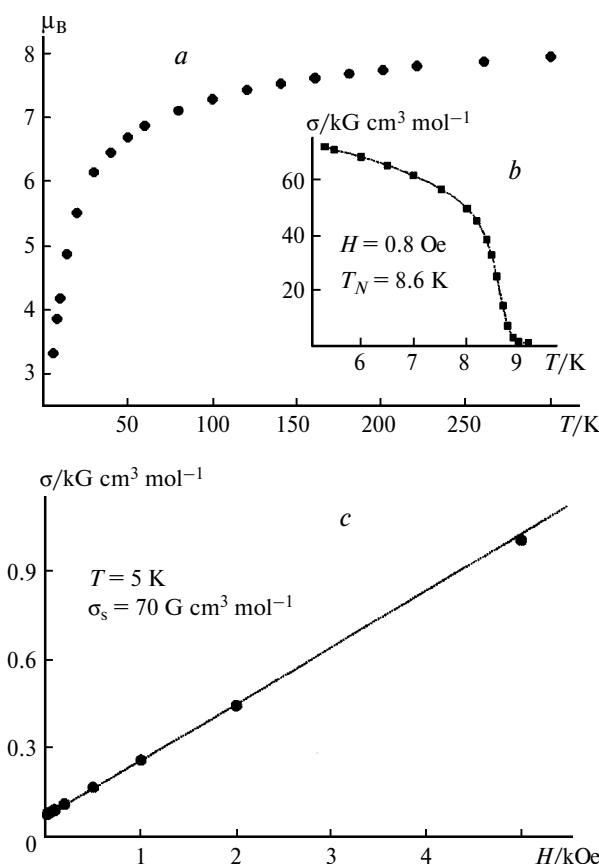



Fig. 1. IR spectrum of compound **1**.

Fig. 2. Magnetic properties of compound **1**: (a) temperature dependence of the effective magnetic moment; (b) temperature dependence of magnetization; (c) field dependence of magnetization at $T = 5 \text{ K}$.

Study of the magnetic properties showed that the effective magnetic moment of compound **1** at room temperature is $7.9 \mu_B$, which is close to the theoretical value, $7.68 \mu_B$, for noncoupled Fe^{III} ($S = 5/2$) and Fe^{II} ($S = 2$) spins. As temperature decreases, μ_{eff} decreases (Fig. 2), indicating the predominance of antiferromagnetic exchange interactions. Below 10 K, complex **1** undergoes a magnetic phase transition into a magnetically ordered state. The ordering temperature ($T_N = 8.6 \text{ K}$) was determined as the extremum of $\partial\sigma/\partial T$ for the $\sigma(T)$ curve measured in a low field (0.8 Oe). Below T_N , the magnetization isotherms obey the equation $\sigma(H) = \sigma_s + \chi H$, where $\sigma_s = 70 \text{ G cm}^3 \text{mol}^{-1}$ at $T = 5 \text{ K}$. These results imply that at $T_N < 8.6 \text{ K}$, the substance passes to an antiferromagnetic state with a weak ferromagnetism. We also confirmed the published data¹⁴ stating that in the case of $\text{Fe}(\text{C}_4\text{O}_4) \cdot 2\text{H}_2\text{O}$ and $\text{Fe}(\text{C}_4\text{O}_4)(\text{OH}) \cdot 3\text{H}_2\text{O}$, the cooperative magnetic ordering effects are not manifested down to 2 K.

Experimental

The IR spectra were recorded using a Bruker Vector 22 spectrometer in the 400–4000 cm^{-1} range for samples pressed

as pellets with KBr. The magnetic susceptibilities of the obtained phases in the 2–300 K temperature range were measured using a Quantum Design MPMS-5S SQUID magnetometer.

Synthesis of tris(squarato)hydrosquaratodiferrate(II,III)bistetrabutylammonium heptahydrate, $[\text{N}(\text{n-C}_4\text{H}_9)_4\text{I}_2[\text{Fe}^{\text{II}}\text{Fe}^{\text{III}}(\text{C}_4\text{O}_4)_3(\text{HC}_4\text{O}_4)] \cdot 7\text{H}_2\text{O}$. A solution of $\text{H}_2\text{C}_4\text{O}_4$ (171 mg, 1.5 mmol) in 5 mL of water was neutralized at ~20 °C with a 40% aqueous solution of $\text{N}(\text{n-C}_4\text{H}_9)_4\text{OH}$ to pH 7 (acidity was controlled using a Calimatic 756 pH-meter). A solution containing $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ (135 mg, 0.5 mmol) and $\text{FeSO}_4 \cdot (\text{NH}_4)_2\text{SO}_4 \cdot 6\text{H}_2\text{O}$ (196 mg, 0.5 mmol) in 5 mL of water was added to the obtained solution of $[\text{N}(\text{C}_4\text{H}_9)_4\text{I}_2\text{C}_4\text{O}_4$. The mixture immediately turned dark violet. After 3 h, the finely dispersed dark violet precipitate was filtered off, washed with cold water, and dried in air. Yield 235 mg (53%). Found (%): Fe, 9.6; C, 49.3; N, 2.6; H, 7.1. $\text{Fe}_2\text{C}_{48}\text{H}_{87}\text{O}_{23}\text{N}_2$. Calculated (%): Fe, 9.5; C, 49.2; N, 2.4; H, 7.5.

This work was financially supported by the Russian Foundation for Basic Research (Projects No. 00-03-32987 and No. 99-07-90133), the American Civil Research and Development Foundation (CRDF, grant REC-008), and The Ministry of Education of the Russian Federation. (grant E00-50-80).

References

1. V. I. Ovcharenko and R. Z. Sagdeev, *Usp. Khim.*, 1999, **68**, 381 [*Russ. Chem. Rev.*, 1999, **68** (Engl. Transl.)].
2. X. Solans, M. Aguiló, A. Gleizes, J. Faus, M. Julve, and N. Verdaguera, *Inorg. Chem.*, 1990, **29**, 775.
3. C. E. Xantopoulos, M. P. Sigalas, G. A. Katsoulos, C. A. Tsipis, C. C. Hadjikostas, A. Terzis, and M. Mentzas, *Inorg. Chem.*, 1993, **32**, 3743.
4. C.-R. Lee, C.-C. Wang, and Y. Wang, *Acta Crystallogr., Sec. B*, 1996, **52**, 966.
5. I. Castro, J. Sletten, M. L. Calatayud, M. Julve, J. Cano, F. Lloret, and A. Caneschi, *Inorg. Chem.*, 1995, **34**, 4903.
6. M. Habenschuss and B. C. Gerstein, *J. Chem. Phys.*, 1974, **61**, 852.
7. S. Decurtins, H. W. Schmalle, R. Pellaux, P. Fischer, and A. Hauser, *Mol. Cryst. Liq. Crist.*, 1997, **305**, 227.
8. S. Decurtins, H. W. Schmalle, P. Schneuwly, J. Ensling, and P. Gütlich, *J. Am. Chem. Soc.*, 1994, **116**, 9521.
9. S. Decurtins, M. Gross, H. W. Schmalle, and S. Ferlay, *Inorg. Chem.*, 1998, **37**, 2443.
10. S. Decurtins, H. W. Schmalle, R. Pellaux, P. Schneuwly, and A. Hauser, *Inorg. Chem.*, 1996, **35**, 1451.
11. F. H. Allen and O. Kennard, *Chemical Design Automatic News*, 1993, **8**, 31, Cambridge Structural Database, Release October, 2001.
12. Y. Wang, G. D. Stucky, and J. M. Williams, *J. Chem. Soc., Perkin Trans. 2*, 1974, 35.
13. R. West and H. Y. Niu, *J. Am. Chem. Soc.*, 1963, **85**, 2589.
14. G. J. Long, *Inorg. Chem.*, 1978, **17**, 2702.

Received July 19, 2002
in revised form October 28, 2002